Imprimitively Generated Lie-Algebraic Hamiltonians and Separation of Variables

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imprimitively Generated Lie-algebraic Hamiltonians and Separation of Variables

Turbiner’s conjecture posits that a Lie-algebraic Hamiltonian operator whose domain is a subset of the Euclidean plane admits a separation of variables. A proof of this conjecture is given in those cases where the generating Lie-algebra acts imprimitively. The general form of the conjecture is false. A counter-example is given based on the trigonometric OlshanetskyPerelomov potential correspond...

متن کامل

Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework

We show that complex Lie algebras (in particular sl(2,C)) provide us with an elegant method for studying the transition from real to complex eigenvalues of a class of non-Hermitian Hamiltonians: complexified Scarf II, generalized Pöschl-Teller, and Morse. The characterizations of these Hamiltonians under the so-called pseudoHermiticity are also discussed. PACS: 02.20.Sv; 03.65.Fd; 03.65.Ge

متن کامل

Lie Algebras, Algebraic Groups, and Lie Groups

These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...

متن کامل

Lie Algebras of Differential Operators and Lie-Algebraic Potentials

An explicit characterisation of all second order differential operators on the line which can be written as bilinear combinations of the generators of a linitedimensional Lie algebra of first order differential operators is found, solving a problem arising in the Lie-algebraic approach to scattering theory and molecular dynamics. One-dimensional potentials corresponding to these Lie algebras ar...

متن کامل

Lie algebraic Noncommutative Gravity

We exploit the Seiberg – Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space time. Detailed expressions of the Seiberg – Witten maps for the gauge parameters, gauge potentials and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 1998

ISSN: 0008-414X,1496-4279

DOI: 10.4153/cjm-1998-063-2